
www.pipelinepub.com Volume 4, Issue 4

Network, Heal Thyself!
Technological Advances Put Building Blocks in Place to Create
Self-Healing, Reactive Network Architecture
by Ken Ferderer

Since the beginning of network computing, networks have been designed as a
collection of independent devices that have a limited awareness of each other, and
no awareness of the collective whole outside of the basic routing fabric. As a result,
networks have always had a limited ability to dynamically adjust to problems or
events occurring within the network and are incapable of adjusting to any changes
outside the network.

Traditionally, network engineers have attempted to build around these shortcomings
with redundant routes, standby devices, and other mechanisms that introduce some
basic resiliency into the network. These simple workarounds have always begged
the larger questions:

• Is it possible for a network and its collection of independent devices to react
appropriately to changes in the environment without manual intervention?

• Could a network ever recognize an event outside of its routing fabric that
requires a change to its behavior or operation of the collective whole?

• And based on what happens, could it modify the behaviors of multiple
independent devices to accommodate that event?

Take as an example a sophisticated emergency response network, which links
together special sensors that detect fires and chemical, radiological or nuclear
threats. Based on the ‘type’ of event recognized by the sensor arrays, the
underlying logical network must be dynamically configured in any number of pre-
defined configurations.

In one such scenario, the sensors may report that a fire has been detected and,
based on this event, the network should immediately alter its current logical
configuration to provide secure connectivity between first responders, including
police and fire departments, local authorities, and local news agencies. If however,
a chemical or nuclear event is detected, the underlying network should
instantaneously reconfigure itself to securely connect all federal response agencies,
command and control, and route around any unresponsive sites.

© 2006, All information contained herein is the sole property of Pipeline Publishing, LLC. Pipeline Publishing LLC reserves all rights and privileges
regarding the use of this information. Any unauthorized use, such as distributing, copying, modifying, or reprinting, is not permitted. This
document is not intended for reproduction or distribution outside of www.pipelinepub.com. To obtain permission to reproduce or distribute this
document contact sales@pipelinepub.com for information about Reprint Services.

http://www.pipelinepub.com/
http://www.pipelinepub.com/
http://www.pipelinepub.com/

To date, this type of dynamic network-level reconfiguration – or self-healing –
based on a non-network event has simply not been possible. Even the network
management solutions that, by definition, provide a broader view of the deployed
network environment, are only able to recognize limited network-level events, such
as dropped routes, throughput issues, and device failures. These solutions have a
very limited capability to automatically react to, or recover from, any type of
network event. In fact, most network management solutions are only capable of
pushing static configuration files out to deployed devices that have lost their
configurations.

In most cases today, the only self-healing network alternative is to construct
redundant routes so that if a path becomes unavailable, traffic will automatically re-
route onto the secondary path. This solution is far from ideal, as it is impossible to
build enough redundant routes and workarounds for every type of potential event,
both internally and externally. Truly dynamic and automatic reconfiguration of the
logical network is simply not possible with existing technologies no matter what
device and management vendors would like us to believe. However, times are
changing.

Technology advances have finally provided the building blocks required to create a
sophisticated networking architecture that is truly dynamic and has the
characteristics to self-heal – or react – to any number of definable events, even if
they are occurring outside of the networked fabric. The essential technologies
consist of:

• Device-level service oriented architectures (SOA) : These SOA are able to
expose underlying communication services and other capabilities on a typical
network device to higher-level applications;

• Advanced policy-driven control and management solutions: These
technologies control network characteristics and behavior based on
configurable user defined policies and implement the behaviors onto selected
devices;

© 2006, All information contained herein is the sole property of Pipeline Publishing, LLC. Pipeline Publishing LLC reserves all rights and privileges
regarding the use of this information. Any unauthorized use, such as distributing, copying, modifying, or reprinting, is not permitted. This
document is not intended for reproduction or distribution outside of www.pipelinepub.com. To obtain permission to reproduce or distribute this
document contact sales@pipelinepub.com for information about Reprint Services.

• Sophisticated rules engines: These engines are capable of defining events
and the appropriate response criteria for scenarios both within the network
fabric and external to the network.

All that is required is to carefully arrange these technologies into a cohesive and
functional working system, and that begins with the actual network devices.
Traditional networking devices have proprietary and closed architectures that
expose to the end user very few services, except for basic transport services
configured via the command line or mechanisms that enable the loading of whole
configuration files from network management systems.

New networking devices being introduced into the market today are breaking that
mold. Instead, they are shipping with fully open architectures that enable end-users
to build and run applications directly on the device or on service blades within the
device. In some cases, the device actually exposes the underlying kernel services
and interface capabilities through a SOA layer where the external application or end
user can toggle the behavior of the device through these exposed levers. The open
nature of the device allows for robust application-level agents to be run on the
device. These agents are capable of not only driving the device behavior, but also
listening to the device and gleaning operational and service performance statistics in
real time.

The ability to manipulate the device while simultaneously receiving real-time
feedback is critical to the next building block required for the solution: the policy
server. Although not a new concept, there have been steady advancements in
policy-based networking technologies and these technologies are now capable of
providing the control and automation functionality required for a truly dynamic, self-
healing network.

Too frequently, the term ‘policy server’ has been used by the network management
vendors to define template servers that manage device-level configuration files. In
these solutions, network engineers build a static configuration file that meets their
requirements then save the configuration as a template. Each subsequent device
load is then achieved by simply pushing the proper configuration template down
onto the device. This is not true policy-based networking.

The new generation of policy-based technologies now available in the market
function at a higher level of abstraction from the network device and are far more
powerful than these traditional template servers. These new policy servers are able
to capture end-user requests through intuitive, non-technical interfaces and use
these requests to define, implement, and govern the behaviors of the underlying
network devices and services.

In this example (Figure 1), the policy server becomes the heart of a dynamic self-
healing network as it provides the necessary intelligence that recognizes events
within, and external to, the network and determines how the network should be
reconfigured based on defined events.

© 2006, All information contained herein is the sole property of Pipeline Publishing, LLC. Pipeline Publishing LLC reserves all rights and privileges
regarding the use of this information. Any unauthorized use, such as distributing, copying, modifying, or reprinting, is not permitted. This
document is not intended for reproduction or distribution outside of www.pipelinepub.com. To obtain permission to reproduce or distribute this
document contact sales@pipelinepub.com for information about Reprint Services.

Fig. 1: Policy server is central to the self-healing network

The policy server accomplishes this by first deconstructing the end user request into
the specific service components that require action or changes to be made. This
determination is made possible by a comprehensive repository of networked
resources that includes all the deployed devices, available network services, and
resources maintained by the policy server. From this repository, the policy server is
able to determine all the deployed resources that require changes to satisfy the
end-user request.

Because the network must be able to react to outside occurrences, the repository
must be able to define and manage resources external to the network such as
application servers, desktops, laptops, and users. These external resources are
modeled in the repository in the same way as the network devices.

Once the resources that need to be re-configured are determined, the policy server
sends directives down to agents running on the actual devices. These directives are
constructed using a markup language, which is interpreted by the agent into the
device-level command language necessary to initiate the services through the SOA
layer on the device.

The combination of this new generation of policy servers – which can define, control
and implement desired behaviors in underlying network devices – with the new
open architectures and exposed SOA layers on these devices allow for dynamic and
instantaneous changes to the logical network environment and behavior.

The final building block for our self-healing network solution consists of a
sophisticated rules engine that defines events in the network, or external to the
network, and the appropriate actions to take in such a form that the policy server
can act upon them.

This rules engine must be capable of sophisticated logic patterns so that complex
conditional decisions can be made. The ability to create complex rules, such as “if A
occurs, then do B, but if A and C occur, then do D,” are necessary to effectively
define a network capable of responding to real world events. In the real world, there
are very few events and actions that consist only of a singular event-to-action
relationship. Most of the scenarios network engineers deal with on a daily basis
have multiple contributing events and multiple actions.

As with the policy server, the rules engine in our solution has to be capable of
modeling events and actions outside of the network. As the policy server receives
notice from an agent residing on a network device or non-network device (server,
desktop, laptop, or even a handheld device) that a defined event has occurred, the
policy server queries the rules engine for the appropriate response(s) to the event
and begins to adjust the underlying network devices accordingly.

Obviously the complexity of the dynamic configuration or self-healing solution
resides in the proper definition of events and actions. The mechanics of dynamically

© 2006, All information contained herein is the sole property of Pipeline Publishing, LLC. Pipeline Publishing LLC reserves all rights and privileges
regarding the use of this information. Any unauthorized use, such as distributing, copying, modifying, or reprinting, is not permitted. This
document is not intended for reproduction or distribution outside of www.pipelinepub.com. To obtain permission to reproduce or distribute this
document contact sales@pipelinepub.com for information about Reprint Services.

implementing change into the networked environment are relatively minor
compared to correctly defining and controlling the change behaviors being
implemented. More importantly, as every network engineer understands, any
change introduced into a system can drastically impact the behavior of that system
in any number of ways – good or bad.

To minimize the risk of building a house of cards that may collapse upon itself as a
new change is being introduced based on an event, the policy server must maintain
a persistent linkage at all times between deployed configurations and the policies
that implemented those configurations within its repository. This critical
functionality allows the network engineer to model potential event scenarios and
see how the underlying logical network will behave as those incremental changes
are being introduced, without disrupting the actual production networks.

Using these building blocks in conjunction with many other existing network
technologies, we are finally making fundamental advances in network automation
and self-healing. Companies working with these technologies are currently
deploying dynamic network solutions such as the emergency response network
described earlier. And, with further refinements from leading hardware and software
companies, network engineers will soon have the ability to control and manage any
network infrastructure using defined policy, and have that network be capable of
recognizing events and implement appropriate actions automatically across the
network fabric as needed. A network that can truly heal itself.

If you have news you’d like to share with Pipeline, contact us at
editor@pipelinepub.com.

© 2006, All information contained herein is the sole property of Pipeline Publishing, LLC. Pipeline Publishing LLC reserves all rights and privileges
regarding the use of this information. Any unauthorized use, such as distributing, copying, modifying, or reprinting, is not permitted. This
document is not intended for reproduction or distribution outside of www.pipelinepub.com. To obtain permission to reproduce or distribute this
document contact sales@pipelinepub.com for information about Reprint Services.

