Scaling SOA through EAI
Enhancement and Use of Model-
Based Standards

PROGRESS

SOFTWARE

Table of Contents

EXECULIVE SUMMATYcviviiiiie et b bbb bbb bbbt e e et bbbt b et 3
KEBY ASSUMPLIONS. ...ttt bbb bbb s e e e e s bt ettt bR e b e e e e bbbt ettt en e e e e s 4
ProduCtiVIty ChallENGES ..ottt 5
EAI Resorts to Custom Code for Complex TranSformations...........ccvereiienieseeseeseeseeine 5
EAI Must Customize to EXtend @ StANard............cocoeeeirrnnniieeessssee s 8
EAI Tools Do Not Enforce Data CONSIStENCY RUIES...........c.civiiirriirieeee e 9
EAI Error Handling is an Afterthought and CUSIOM........ccccovriiiiincccccnieieneses s eseseeenes 11
GOVEINANCE CHalIBNGES ...ttt 11
EAI Lacks @ True COMMON MOUEc.oviiiriririiecceee s 11
EAl is Missing 360° End-to-End Impact ANalySis TOOISccccvvvrveeereeeeiiiiiisrsss e 15
Performance and RUN-TIME ChallENQEScciiiiiieiii e 17
XSLT Causes Significant Performances Challenges ... enns 17
EAI Limitations often “Pollute” and Tax the BUSINESS PrOCESS ..o 18
Dynamic XSD Constraint Processing Overburdens the BPM ... 21
CONCIUSIONS ...ttt bbbttt 22

Scaling SOA through EAI Enhancement and Use of Model-based Standards
Page 2 of 24

Executive Summary

SOA increases business agility by providing:

e Loose coupling instead of the tight coupling of systems,

e Standards-based instead of proprietary technologies,

e Improved vendor interoperability through the use of standards,
o Highly reusable service interfaces.

Many corporations look to their incumbent EAIl vendors to provide the
tooling to support the build-out of scaleable SOA. These vendors have
provided an excellent platform to perform critical systems integration
tasks. They have been particularly effective at:

e Core messaging and transport infrastructure via an Enterprise
Service Bus (ESB),

e Business process orchestration which designs and controls
invocation of services.

However, as corporations attempt to leverage the in-house technologies
provided by the leading EAI and SOA platform vendors, they will likely
encounter significant productivity, governance, and performance
challenges as they seek to scale their SOA pilot projects into large-scale
production implementations.

Progress DataXtend Semantic Integrator’s (Sl) standards-based, model-
driven, visual design tools and distributed runtime operate within
existing EAl frameworks to ensure the real-time scalability of SOA
application integration. Semantic integration with DataXtend S| provides
advantages for productivity, governance, and performance as
corporations scale their SOA projects.

DataXtend Sl Radically Accelerates Productivity

EAI vendors’ point-to-point architecture leads to custom code for managing the
semantic mapping of data between applications. This custom code cripples
productivity and creates brittle integrations that cannot be easily changed,
extended, or scaled.

Scaling SOA through EAI Enhancement and Use of Model-based Standards

Page 3 of 24

Benchmarks show that using DataXtend Sl to perform semantic integration
accelerates productivity and time-to-market by nearly a factor of 3 compared to
using existing EAI technologies, by automating functions such as complex
transformations, extensions to industry standard models, data consistency
support, and declarative error handling.

DataXtend S| Simplifies Governance

Often developers attempt to overcome the shortcomings of tools by deploying
various and ingenious alternative practices. These efforts cause huge manual
governance challenges which create significant project overhead, lengthen
timelines and expand costs.

Case studies show that DataXtend SI’s Common Model Architecture™ (CMA)
radically simplifies the governance complexity found in typical EAI integration
projects. Users are showing a 10-1 acceleration of time-to-market for changes
that are semantically integrated using DataXtend SI. One metadata repository,
one set of mappings against one common model makes the lifecycle
management of an integration project far faster and easier. By using DataXtend
Sl and its CMA, IBM's Telco group claims that they can change out any COTS
package in their Service Delivery Platform (SDP) in two weeks or less.

DataXtend Sl Ensures Critical Performance

DataXtend Sl automatically generates stateless Java as its run-time. It scales
economically and linearly with application server capabilities, easily meeting the
requirements of Tier 1 carriers who are seeing explosive growth in the delivery
of new services. Its run-time eliminates the need for XSLT performance
remediation and delivers a true SOA distributed run-time architecture.
DataXtend SI’s CMA overcomes the semantic gap between applications.

Progress delivers breakthrough technology for integrating business data in
SOA's. DataXtend Semantic Integrator is the first scaleable solution to automate
the costly challenge of reconciling and managing the business integrity of data
(semantics) shared between applications to accelerate application integration.
DataXtend SlI’s unique, metadata-driven CMA leverages a wide variety of
industry-standard and application models, replacing hand code and manual
governance with reuse and automation, reducing the cost, time and complexity
of integrating systems by over 50%.

Key Assumptions

The first important premise of this white paper is that hand-written, custom code
in integration projects creates tight binding of applications and prevents loose
coupling, a critical feature of SOA. Custom code can be described many ways:

= Custom programming code as in Java or Extensible Style-sheet Language
Transformations (XSLT)

= Custom extensions to industry messaging or model standards
= Programmatic scripting languages that are not usable by business analysts

Second, XSLT is essentially a programming language with all the associated
benefits and challenges.

Scaling SOA through EAI Enhancement and Use of Model-based Standards
Page 4 of 24

Third, the leading EAI vendors provide a variety of mapping tools that generate
XSLT as their transformation language. This XSLT might be compiled or
installed into accelerators, but the issues surrounding the productivity,
maintenance and scalability of XSLT in an SOA context are not eliminated.

Fourth, data modeling as a function of integration projects is growing in
importance.

Fifth, this white paper frequently mentions the Telecommunications Shared
Information Data Model (SID). There is nothing unique about this model. The
reader could replace the SID with any other industry data model (OAG, Acord,
HL7, etc.)

Sixth, the term data consistency rules in this white paper is used to cover a
variety of data-oriented terminology that are considered distinct in many data
management contexts:

= Data consistency -- comparing gross revenue and net operating revenue;
= Data integrity -- there is a department head for a non-existent department;
= Data quality -- phone # is 8 digits.

Finally, DataXtend Sl is not a replacement for EAIl technology. The components
of EAI technology that manage business processes and transport and guaranteed
delivery of information (such as an Enterprise Service Bus) are essential to the
build-out of scaleable SOAs and are not in conflict with this white paper.

Productivity Challenges

EAI integration projects must address several development productivity issues
including:

= Executing complex transformations
Extending standards

Enforcing data consistency rules

u Ul

Handling errors

EAI Resorts to Custom Code for Complex Transformations

To ensure re-use of services across multiple applications, business divisions, and
even enterprises, canonical (agreed-upon, standards-based) messages must be
sufficiently abstract so that each constituent of the message can “fit” into the
abstraction. Thus a retail division that thinks of customers in terms of home
phone numbers can share the same notion of customer with a wholesale division
that thinks of customers in terms of VAT IDs, DUNS numbers, and so on.

What enables both divisions to share the same notion of customer would be a
concept such as business party which is sub-classed into individuals and
organizations. In these subclasses are the specifics that distinguish retail from
wholesale eliminating the need for consensus. Each division operates
independently, interoperating with its notion of customer and the abstract model
of business party without affecting the other.

Industry standard models, like the Shared Information Data (SID) model
developed for the telecommunications industry, provide a basis by modeling the

Scaling SOA through EAI Enhancement and Use of Model-based Standards
Page 5 of 24

most common concepts of the industry. However, they require many complex
transformations to and from the model because of their abstract nature. For
example, the SID contains many complex types that can have many
enumerations on each type, each of which could be mapped to different business
contexts which would require many-to-1 or 1-to-many transformations.

Most visual mapping editors from EAI vendors such as Tibco or BEA rely on
XSLT for transformations, but there is no automated drag-drop facility within
these tools to do many-to-1 or 1-to-many transformations. As a result,
developers have to hand-code complex transformations directly in XSLT.

A Complex Transformation Example

Suppose you need to map telephone numbers between two schemas as follows:

CRM Schema

SID Schema

Customer
BusinessPhoneNumber —_|
MobilePhoneNumber
HomePhoneNumber

Customer
TelephoneNumber

\ TelephoneNumberType

TelephoneNumberValue

\
\\ TelephoneNumber
\\ TelephoneNumberType
TelephoneNumberValue
TelephoneNumber
TelephoneNumberType
TelephoneNumberValue

Figure 1: A Complex Transformation for Phone Numbers

When transforming from CRM Schema to the SID Schema, data from one
Customer instance must map into “Many” occurrences of
TelephoneNumber. When transforming from the SID Schema to the CRM
Schema, data from “Many” instances of Te lephoneNumber must map into
one Customer instance.

The work done in these mappings to build the XSLT will be custom and cannot
be easily used across other mapping files and systems without a significant
amount of manual governance. (See a discussion on the governance challenges
with EAI mapping tools on page 11.) This likely means duplicate work,
duplicate effort, custom code and very real possibilities for error.

Current Practice Alternative

The alternative to coding the complex transformation is to simplify the XSD
(XML Schema Definition) that contains the complex types and causes the
complex transformation. In this scenario, the XSD is modified to make the
abstraction explicit so that the mapping tools can visually create the mapping
without resorting to hand-coded XSLT. The implication of this option is

Scaling SOA through EAI Enhancement and Use of Model-based Standards
Page 6 of 24

discussed in EAI Must Customize to Extend a Standard, on page 8. Physically
changing schemas can raise significant governance challenges. Changes must be
agreed to when this model is shared across mappings and deviations from the
standard must be managed carefully to ensure future upgrade paths.

DataXtend SlI's Answer to Complex Transformations is
Computed Attributes

DataXtend SI’s Expression Builder can create computed attributes which are
virtual attributes in metadata that enhance or simplify the SID without changing
it. For example, while the attribute mobile phone number is not in the SID,
DataXtend Sl can create a virtual attribute that makes a mobile phone number
look like a real attribute in the SID.

Schema Map File - Eclipse Platform
[le Edr Navigate Search Project Bun Window Help

[y~ m AE Qv | g il
Brack. B CH|A Echa.. @ JCom.. |Q sche.. @ Sehe.. | O Sehe... m_ 7] Froperty Editor 11
& = || Select Claze Map: | @) AccountinfoCovadCRM == Customer SID - Progusrhios of franslornatan o -

4 AccountManagem | - D &l General ...

ol Cusi

& Intermap ccoumlil} custammHar Source ., (B Contactinfo,, &
& CugsRosettaDeny tionDisk customerStatus (2 Taget P © mobilePhan &
(&) AllermaleContiact 1D G

& Test-lava-Project

3 Enumar... || | o
¥ (s CompanyMame artyRoleld @
* iy TMFCatalyst @) PattahcounRaD B s Last Mo... Lze
1 WelpointMembers | () ProspectiD CulendarPartyRole ¥ & Walus i null
@ Dillinglrfo CustomerPosseses W Contalne.
= @ Contaclinlo wmal @ = e g 2
k) Ernail eMsiladdress @ Class M. @ Accountl. # %
o] Fax eMailProtocal @ Schorma, . @ Covad)-\Q
TRE AddressContactMediumizols % Exchang.. & Exchang. A&
® @ Address PantyRok i3 W 3 [+/]
= © Telwphane BostallDlveryAddiss 9 ®
(3) Extension validEor o s User Ann... 8
(a2) Li O fax 9
mohilePhone @
number @
Sl ST type @
@ @ SitelnfoF pContactTelephonetumber AddreszContactMediumRole % &
« @ ComtactinfoForTelmphone PanyRoleContactablevia ¥
¥ @ AccountinfoForComactindo PostalDeliveryAddress 4 &
= @ AccountinfoFardillingnfo validFor @ =
0 BileOrdmForAcclinio @ ofhcePhone @ @
¥ @ CresteOrderTypeForAcctinfo PanyDermoaraphjcProfiles % &
B0 A Obpels PartyPrahleTypeCatigonz s % @

PartyRaoleAzzociation % &

PanyRoleCategorizedDy @
BaryRoleCateganzilsng 9 @
PatyRolelmokedn % @
PartyHolelmuohedWilh 9 @
PatyRoleCwms % @

PlacePanyRoledssoc % w

Schema Map View | Class Map View | Report View . Covad CRMToSIDLpmp

< 3 || Progress| Problems Error Log ‘Warnings | [Z] Editor 21 Tester Impact Analysis
— =0 Enter the details for computed attribute “mobileFhona® L]
T - -~ Ganeral| Geller | Satter| Descrption
é: T ot
b - . Language: |Expression |
= 5
S: %E: Erprossion Type_| Erpression |
) .) Select Al Values
ﬁ > 9P From L Sty RaleConlactablivia: as elemient
L T — | Where (&) elementflype = “Mobde®
E:I Walug i O elemen
T .

Figure 2: DataXtend SI Mapping Complex Transformations Easily
into the SID

The advantage is that it makes the common model easier for analysts to
understand and is re-usable in mappings across multiple application interfaces.
The computed attributes are in metadata and appear to be simple attributes to
any other application interface. This is a better approach for several reasons:

= No custom code

= Re-usable attributes across any number of client applications mapped to
the common model

= Computed attributes can be leveraged across any number of projects
Scaling SOA through EAI Enhancement and Use of Model-based Standards
Page 7 of 24

In the example of telephone numbers, additional types of telephone numbers can
be added over time without the need to change the physical model, simply by
defining additional computed attributes.

EAI Must Customize to Extend a Standard

There are several good reasons why a standard like the SID might need to
change the SID in your environment. These include:

New ISV requirements
Missing information from the standard

The need to simplify the standard

u v U

The need to add rules to represent concrete concepts with the SID’s
abstract concepts

Current Practice Alternative #1 — Physically Change the Model

When using typical EAI mapping tools, the SID is just another schema, so any
change to the SID is a physical change to the XSD, as in the case of making a
concrete attribute called mobile phone humber from the abstraction of number
and type in the SID. This physical change to the schema requires significant
manual governance to gain agreement across all parties using the SID, and to
manage updates of the SID standard over time. The corporation has now begun
to diverge from the industry standard, losing the value gained from being
standards-based. For more on governance, see Governance Challenges on page
12.

Current Practice Alternative #2 — Write XSLT

The alternative to making physical changes in a schema is to handcraft XSLT
code to navigate the complex transformations caused by the abstract nature of
the SID. Current EAIl mapping tools do not provide a visual or declarative IDE,
thus forcing the developer to code XSLT.

Implications

The result of this handcrafting and the point-to-point nature of EAI mapping
tools is custom code that causes brittleness in the architecture and a tight binding
between systems, instead of the loose coupling prescribed by SOA.

With either approach, there is no gain from using standards because any change
to the model means a physical change to the XSDs, which now creates a
physical variation from the industry standard. As each project instantiates its
own XSD, implementing multiple versions of the abstract model, the
corporation increases its divergence from the standard.

DataXtend SI's Solution for Extending Standards is Computed
Attributes

DataXtend Sl provides computed attributes that can be used to enhance or
simplify the standard without directly changing it. By using DataXtend
Designer, a developer or analyst can make extensions to the SID to fulfill

Scaling SOA through EAI Enhancement and Use of Model-based Standards
Page 8 of 24

requirements for the business without physically changing the SID’s XSD.
DataXtend SlI’s design and run-time architecture uses metadata captured
distinctly from the SID common model.

The capability provided by DataXtend’s computed attributes for simplifying a
common model is theoretically possible with XSLT by using templates that
would be used in endpoint transformations or as global variables in the
transformation engine, but this approach has several shortcomings:

= Complexity of implementation.

Such a complex set of templates would be difficult to implement because
complex transformations and information aggregation are beyond the
capability of most XSLT mapping tools. DataXtend SlI’s graphical
interface makes it easy to create most abstractions and the code is
generated automatically.

= Coordination of experts.

Development would require experts in the common architecture to work
closely with XSLT development experts. Disparate skill sets mean
communication overhead and potential for misunderstandings and errors.
DataXtend SI empowers architects to design and monitor the
implementation of the extensions without programming. The code is
automatically generated.

= Architectural brittleness.

Changes needed to accommodate a new system may result in modifications
to the common XSLTs. Without clear impact analysis, all systems using
extensions may need to be revalidated. DataXtend Sl not only provides
system-wide impact analysis but also includes a test environment that can
trace sample messages through the system from end to end. For more on
impact analysis, look on page 15.

EAI Tools Do Not Enforce Data Consistency Rules

Semantic rules that ensure data consistency cannot be enforced natively by
XML. For example, inter-field dependency constraints such as these might be
typical:

= Service disconnect dates must be in the future.
= A subscriber’s move request requires two addresses.

= If the service type is Voice over IP (VOIP), then there must be a service
value provided which specifies the VOIP Port.

EAI mapping tools do not support the building and execution of these types of
business rules. Thus, to enforce data consistency, alternative technologies such
as script languages, business rules engines, or database reference tools are
required beyond current EAI tools.

Current Practice Alternative #1 — Write Code

Developers often resort to writing scripts to enforce data consistency. These
scripting languages are provided by the EAI vendor and can be proprietary or
can call Java itself.

Scaling SOA through EAI Enhancement and Use of Model-based Standards
Page 9 of 24

Implication

Consistent rules application can’t be enforced by writing custom code. Scripts or
custom code will be tightly bound to the applications being integrated. The same
business logic will have to be written and re-written as many times as different
variations of those applications are integrated. In the example above, if a portal
and Customer Relationship Management (CRM) system are each processing
orders, the business logic that enforces the rules must be written twice, once for
each integration. What ensures consistency in the design, build or deployment of
the rule?

Current Practice Alternative #2 — Rules Engines

Many developers have looked at deploying rules engines to ensure data
consistency. The theory goes that if rules need to be fired in-line, then a rules
engine provides abstraction of the rule from the XML and can ensure data
consistency. Rules engines accept a set of inputs and produce an output
including errors that have occurred in the firing of the rule.

Implications
There are a number of challenges using a rules engine:

1) A rules engine will not enable the rule to be re-usable because of the
specificity of the data related to the endpoints. Attributes from each
application (portal and CRM) will differ, causing the rule to fail because of
an attribute mismatch.

2) Impact analysis will not be accurate because the rules "metadata” is not
integrated with the metadata of the schemas captured in the EAI
technology.

3) Performance often suffers as these rules engines are built on proprietary
servers which often become a bottleneck and single point of failure.

4) These are very complex solutions that exact a significant overhead in
training and maintenance in order to fire very simple rules.

DataXtend SI's Answer to Data Consistency Rules

All manner of data consistency rules can be written in DataXtend Designer and
enforced in DataXtend SI’s runtime, all captured as part of DataXtend SI’s
metadata without writing any custom code. Since these rules are captured in
DataXtend SlI’s integrated metadata, all dependencies related to rules are
captured when impact analysis is run -- a very powerful feature unique to
DataXtend SI.

Finally, as these rules are often understood best by analysts, DataXtend
Designer uniquely provides the Ul to enable analysts to write the rules instead of
relying on communication to developers to then code them.

Scaling SOA through EAI Enhancement and Use of Model-based Standards
Page 10 of 24

EAI Error Handling is an Afterthought and Custom

XSLT, the typical EAI transformation language, does not provide a native error
detecting and reporting mechanism for determining whether a transformation
works as intended, or for handling exceptions when they occur. Consequently,
development and change-management lifecycles move slowly because custom
code has to be written to handle errors.

Implications of Using XSLT for Error Handling

Using only a basic XSLT error handling mechanism can result in the following
problems:

= Transactions stop on the first failure.
= Cryptic error codes are produced.

= Analysts cannot participate in the design of the appropriate error messages
and responses back to the sender.

= Error handling differs by XSLT processor (Xalan, Saxon, MSXML, and so
forth).

= [Each XSLT processor’s own unique set of exception handling tools must
be brought to bear in handling errors in input documents being processed.

DataXtend SI's Answer — Error Handling with No Custom Code

DataXtend Sl traps every error and models an error response in memory that can
be mapped to a response document, picked up by a BPM, written to an error log,
and persisted to a database for archival and reporting purposes.

Analysts can define in English the response that goes in the response document
when a rule fails, so that there is a clear explanation of the cause of the error,
including all details such as data and context behind the error.

Governance Challenges

Governance is a mechanism an IT department uses to ensure compliance with its
own rules and regulations. EAI project governance is more difficult than most
because:

= EAI lacks a common model architecture.

= EAIl is missing 360° E2E (End-to-End) impact analysis tools.

EAI Lacks a True Common Model

EAI vendors do not have design tools to take advantage of a common model
such as the SID standard which forces developers to conduct a significant
workaround with multiple manual steps, creating numerous mapping files to
accomplish one round trip. Further, using XSLT as the transformation language
means re-use can only be achieved by resorting to programming XSLT, creating
even more governance challenges.

Scaling SOA through EAI Enhancement and Use of Model-based Standards
Page 11 of 24

Current Best Practice Alternative #1 -- Use the SID with Point-
to-Point EAI Mapping Tools.

Although EAI mapping tools are inherently point-to-point, a current best
practice promotes the notion of canonical messages. When mapping between
source XSDs A and C with an intervening standard such as the SID, the XSLT
mapping file transformations created are A->SID and SID->C. The return from
the target to the source results in two more transformation files, C->SID and
SID->A, for a total of four transformation files for each source-to-target

mapping.
«—) | [D) |«—
App A
” — o) | [o) || "*F
58S
ources o T e | [oo —
—{ @©o) | [©p) |— "*C
v «—] o) || Do) b—
—> sp) | [D) |—| ¥
X — @D || ©D) f— 5 Targets
PP D App|
—{ @©o | [©p) |—
e — ©o) || s — poo
—1{ o) | | o |—

Figure 3: 20 Copies of the SID Schema and 20 Mappings

The sheer number of mapping files created causes considerable governance
overhead because any XSD change will require re-testing of every mapping file
to ensure accuracy. This testing becomes even more critical and manual if
developers had to write XSLT in these mapping files to accomplish complex
transformations. (See the complex transformation example on page 6.) As we
will see later in this section, the impact analysis provided by these tools is not
sufficient to determine which mapping files need to be tested.

Implications of Mapping the SID in a Point-to-Point
Architecture

In this EAI point-to-point architecture, the canonical model is represented by a
physical XSD which is processed on the message bus and picked up by
applications as needed. Each application must map to this canonical model in
order to complete the integration.

Mapping the SID in EAI technologies is extremely difficult for at least two key
reasons:

= EAI mapping tools will be a productivity burden if the developer must
navigate across all 1080 classes to complete a mapping. EAI mapping tools
cannot distinguish some classes from others. Every class has the same
priority as every other class. Further, the tools cannot show the developer
which attributes are left to map. Assuming a GUI that shows mapping lines

Scaling SOA through EAI Enhancement and Use of Model-based Standards
Page 12 of 24

between schemas, the number of mapping lines between the thousands of
attributes becomes overwhelming.

= Second, it is likely that all XSD constraints that would check for data

syntax accuracy would have to be moved out of the schema and into BPM
to enforce data consistency. With a schema that large, it is very likely that
at any one point, information is not available to satisfy a given rule, and
thus the rule would be violated. This will “pollute” BPM with specifics,
preventing re-use, and dramatically slowing performance. (See the sub-
section "Dynamic XSD Constraint Processing Pollutes the BPM" on page
18.)

Current Practice Alternative #2 — Mapping Smaller XSDs with
XSLT Templates

One alternative to working with the whole complex SID is to work with subsets
based on the SID packages described in UML, such as Customer, CustomerBill,
and so on. Each XSD is provided by the telecommunications standards body
with all of the direct data elements needed and includes all of the additional data
elements from other packages that are needed to fulfill the structure.

Figure 5 shows the mapping of a CRM system to the SID XSDs Customer and
CustomerBi I I where both schemas share common classes and attributes
represented by “C.”

CRM
Application

A\ 4

Customer XSD :\ Y

<

CSID

\ CustomerBill XSD

Figure 4: Mapping of a CRM System to the SID XSD

Because of the point-to-point architecture of EAIl mapping tools, which results
in the creation of two physical transformation files — one for each unique

mapping of the CRM application package to the SID XSD — developers would
normally have to duplicate the mapping work of "Cgp" in the SID XSDs to the
"Cqpp" 0f the CRM application.

Rather than creating duplicate mappings between the "C" of each package and
the equivalent attributes in the CRM system (and to build re-use in this

Scaling SOA through EAI Enhancement and Use of Model-based Standards
Page 13 of 24

architecture), developers will use XSLT templates to map common attributes
across packages.

While yet another transformation file has now been created Cp,= Csp, bringing
the total to 3 as shown in Figure 5 (or 5 if a round trip mapping is required), this
XSLT template technique does reduce the need somewhat for duplicate mapping
and work.

Implications of XSLT Templates

While XSLT templates promote some re-use in the architecture, it comes at a
very heavy governance price.

First, developers must resort to coding XSLT if they are building templates. EAI
mapping tooling does not provide Ul support for XSLT templates. The net result
is code; code that is not documented and not captured in any sort of metadata.

Second, re-use is very limited. The XSLT templates can only be re-used if the
source and target attribute names and structure are identical across applications.

For example, if we now want to map an ordering system to the SID Customer
XSD, then that ordering system must have attributes that correspond to " Cyyp
spelled identically to the CRM system attributes, if the XSLT template is to be
re-used. There is no tolerance for discrepancies.

As the scale increases with additional systems and business processes spanning
multiple projects, the governance of all of the unique transformation files and all
of the custom XSLT templates becomes very challenging and time-consuming.

EAI tools do not provide automated governance capabilities to alert the
developers that a given change will cause a given transformation to stop
working because the XSLT template that is associated with it will not work any
longer. The corporation is left to enforce governance manually.

DataXtend S| Delivers a Common Model Architecture (CMA)

DataXtend SI implements a true common model architecture which enables
corporations to combine all of the best practices associated with canonical
message development and deployment and radically simplifies the effort
through automation and full metadata capture.

Without DataXtend Sl, each individual best practice must be manually governed
which increases complexity and risk dramatically as SOA projects scale.
DataXtend Sl delivers these best practices (canonical message deployment, re-
usable assets, data consistency and impact analysis) in a centralized design
environment.

Scaling SOA through EAI Enhancement and Use of Model-based Standards
Page 14 of 24

App A 4| SID le—x App E

App B+ «—» App F

App C 1 [App G

App D le—» App H

metadatd

1 common SID
1 design metadata repository

Figure 5: A Common Model Architecture

The considerable benefits of a common model architecture include:
1) No manual governance of mapping files and schemas.

One metadata repository, one set of mappings against one common model
makes the lifecycle management of an integration project far faster and
easier. This common model architecture is why IBM's Telco group can
claim that they can change out any COTS package in their SDP in two
weeks or less.

2) An entirely re-usable asset within and across business domains.

Because any extensions to the common model are maintained in metadata
and checked in and out of source control, the integrity of the common
model can be leveraged across projects effectively without custom code.

3) 360° End-2-End (E2E) Impact Analysis.

With a common model architecture, any interaction with the common

model resides in the single metadata repository without resorting to multiple
files that have to be coordinated, loaded into other file systems or scanned
manually.

EAl is Missing 360° End-to-End Impact Analysis Tools

To make changes quickly, systems professionals must know the cost of change
before it has to be made. EAI technologies do not provide a full impact analysis
of how or where an attribute is used, so you cannot determine the exact effect of
a given change to an integration element such as a schema, class, attribute, rule,
or operation. Thus, everything must be inspected and tested, creating long test
cycles for even the smallest change.

Scaling SOA through EAI Enhancement and Use of Model-based Standards
Page 15 of 24

DataXtend SI’s impact analysis reports on the use of any attribute, object/class,
rule, schema and operation, fully integrated with and interactively accessible
from DataXtend Designer.

Current EAIl Best Practice Uses an Impact Analysis Repository

Some EAI technologies, such as Tibco's XML Canon, provide a limited XML
repository which can index XML schemas and provide limited search
capabilities on parameters such as name or name space. However, this type of
repository has some very large limitations.

Implications of Using an EAIl Impact Analysis Repository

= It can only show direct dependences of the affected attribute with no levels
of reverse chaining. For example, if an attribute that was changed from
numeric to string is used in a function or global variable, the impact
analysis won't find that function or variable. You are left to manually
search each individual XSLT file to figure out what has to be changed and
re-tested.

= It cannot show you XSLT that had to be hand-crafted to accomplish
complex transformations, XSLT templates or global variables, which are
indicative of relationships that must be tracked to determine elements of
potential change.

= It cannot show you custom code that had to be written to enforce data
consistency and integrity (inter-field dependency constraints).

= It cannot show different versions of a schema. If a new common model is
made available from the standards bodies, system professionals should be
able to verify the changes that the new model would cause to the existing
integration projects. The only way to do this in these XML repositories is
to manually determine the difference between the new and old schema and
then search each change individually — a very laborious and error-prone
process.

DataXtend SI's Answer to Impact Analysis -- 360° End-to-End
(E2E)

DataXtend Sl provides an end-to-end understanding of any change to the
integration architecture across all applications in the integration without having
to manually load schemas into a separate metadata repository.

DataXtend SI’s impact analysis provides complete reverse chaining through all
of the indirect associations and relationships to the affected attribute, object,
class, rule, schema or operation.

DataXtend SI’s impact analysis not only shows every schema, class and
attribute, it also captures every rule created (data consistency, computed
attribute and semantic routing) on any piece of the integration.

DataXtend SI’s impact analysis can also compare whole schemas to the existing
integration. For example, if SID v.10 has just come out and integrations are in
place with previous versions, DataXtend SI’s 360° E2E impact analysis analyzes
and tells analysts and developers the impact that the new model will have on the
entire project.

Scaling SOA through EAI Enhancement and Use of Model-based Standards
Page 16 of 24

Even the operations that are executed are understood in terms of the impact of
change, providing a complete and accurate picture of what has to be re-tested to
ensure that all of the pieces continue to work.

Performance and Run-Time Challenges

EAI uses point-to-point mappings for integrating applications resulting in a
proliferation of mapping files. These files must be invoked by external business
logic, either in the service bus or in the BPM.

System performance issues discussed here include:
= Using XSLT

= How point-to-point mapping affects the business process

XSLT Causes Significant Performances Challenges

As the SOA scales up and XML messages proliferate in size and number,
performance takes a “nosedive.” This is often due to using XSLT to transform
XML to XML. For certain transformations, XSLT offers more than one solution,
further complicating the task of writing XSLT scripts because performance and
efficiency issues need to be considered.

As previously discussed, a typical EAl mapping between source XSD (A) and
target XSD (C) results in two unique XSLT mapping files, A>C and C>A, and
any necessary custom code does not carry over from the first mapping. So for
each pair of systems interacting with each other, there are at least two mapping
files and associated custom code. The complexity increases dramatically as the
number of systems increases.

Current Best Practice Solutions

The issues around XSLT performance are well known and have led a number of
vendors to provide the following solutions:

= Compile the XSLT in the vendor’s runtime (Tibco).
= Provide XML accelerators to increase performance (DataPower).

= Provide XSLT compilers (XSLTC) that create Java classes to speed up
performance (Sun).

IMPLICATIONS OF PERFORMANCE “ SOLUTIONS”

Each approach introduces into the architecture either proprietary runtimes
(which mitigate the value of using XSLT), or additional points of
interoperability and change management (such as managing support for
consistent XSLT syntax across all of the additional accelerators). As with any
programming language, XSLT development requires governance and an
adherence to standards to minimize architectural complexity.

Scaling SOA through EAI Enhancement and Use of Model-based Standards
Page 17 of 24

DataXtend SI's Answer to XSLT Performance Issues is to
Generate Java Code from Metadata

DataXtend SI’s CMA in run-time, stateless Java, uses model-driven semantic
mapping logic to provide automatic mediation, transformations, and routing in
memory without relying on external invocations from other technologies.
DataXtend Sl’s Java run-time improves performance over XSLT without
resorting to external accelerators.

EAIl Limitations often “Pollute” and Tax the Business Process

BPM tools found in EAI suites provide powerful technology to orchestrate and
call activities and perform many programming-like functions using industry-
standard languages like BPEL. These tools are often used to overcome
deficiencies in other components of these suites. The effect, however,
diminishes the re-usability and scalability of processes created with BPM tools.

Mapping Tool Limitations Drive Developers to Overburden the
BPM

The mapping tools of the major EAI vendors are point-to-point in nature. For
simple EAI mappings from one schema to another, the transformation takes one
input document and creates one form of output document (A->C).

However, suppose that there are two choices for document A’s transformation,
as in two different inventory systems (C or D). Ideally, the tool should be able to
do semantic routing by defining rules that can analyze the data at runtime and
automatically determine and formulate the correct message interface for the ESB
to route it to the appropriate physical system.

Current Practice Is To Write Code in the BPMS

But typically, to invoke the transformation A->D instead of A->C, a developer
must write code in the Business Process Management System (BPMS) or in the
EAI message broker to choose the correct mappings. How else does the
integration technology know which set of mappings to execute in XSLT?

Implications

This approach does not scale because it “pollutes” the BPMS, and hence SOA,
with references to schema names and mapping file decisions that have nothing
to do with the BPMS.

Scaling SOA through EAI Enhancement and Use of Model-based Standards
Page 18 of 24

Send Order L
Process

Business Process
Management System

Process Assign Resource Create — |
(BPMS) Assigned Subscriber

[If App=A, then A>C, Else if]

App =X, A2D, Else ...

XSLT Transform (A...) > B

EAI Point-to-Point Documents on Bus
Transformations -

Figure 6: Point-to-Point Mapping Forces Custom Code into the BPMS

DataXtend Sl Provides Model-Based Semantic Routing and
Mediation via CMA

DataXtend SI’s Expression Builder can manage transformation and routing
based on the message content, and map preconditions defined in the SID without
requiring low-level code. With DataXtend SI, conditional logic for data routing
and transformation is defined once in the model and captured as metadata, rather
than in code.

Through the use of a common model and DataXtend’s integrated Expression
Builder, the decision to generate transformations for one schema instead of
another is activated in runtime metadata dynamically by the firing of rules and
mappings. No specific schema names or endpoints have to be specified at
runtime.

Scaling SOA through EAI Enhancement and Use of Model-based Standards
Page 19 of 24

5

SID Common Model

DataXtend Sl
oMetadata XMLJ
_\ l @d W- _ - assignResource pata Source
Service API processOrader . __resourceAssign API
_orderComplete Validate I TTXMLC
NIEC <Transform ¢
N
' e\ Routey
A X XML)
. J CrealeSubsCiber” bata Source

API

A

XML

Service API

q]
Service API

Data Source
API

Figure 7: A Sample Semantic Mediation in An Order Processing
Implementation

This example uses the SID as the common model between a number of
application interfaces (mostly Web services) from various vendors, with
operations spanning many functions. The implementation runs over an ESB
application server. As an order is processed, the web services APIs pass
messages in the form of XML documents that represent aspects of the order. The
SID common model intervenes between all application interfaces. DataXtend Sl
tools provide the data and operations for validating, transforming, and routing
the XML document messages throughout the system and between the various
vendor APIs.

With DataXtend Sl, the business processes stay generic, invoking only business
operations. The BPMS contains no technical decision nodes to invoke a given
set of mappings. The analyst is able to understand the business process much
better without extra custom code, and re-use of the business processes are
possible. Finally, DataXtend SI’s runtime performs considerably faster because
all of DataXtend SI’s semantic routing takes place near the data and in memory,
where it was designed to run efficiently.

Scaling SOA through EAI Enhancement and Use of Model-based Standards
Page 20 of 24

Dynamic XSD Constraint Processing Overburdens the BPM

Executing XSD constraints in large canonical messages is another area where
the BPM becomes overburdened and performance suffers. As noted above, a
large canonical model might be architected to simplify governance challenges.
However, because the XSD is so large, some of the constraints must be
conditionally enforced because all of the information might not be available to
ever fire the rule in a specific period of time.

For example, in an order provisioning process, there may be a requirement that
every order must have an estimated provision date. But when the order is first
taken within the CRM system, this information is not yet known and the
estimated provision date is still blank. This would cause an XML parser to fire
and fail for the wrong reason.

This kind of conditional data integrity issues becomes very significant when a
large standard like the SID model with over 1080 class types is used. Because it
is so large, data syntax rules spanning multiple processes would all be in one
XSD, but need to execute differently depending on the runtime context.

Current Practices For XSD Constraint Processing
Two options are considered to deal with this validation:
= Develop an XML Custom Parser.

Some developers use a 'validating' XML parser and a custom error handler
to catch and process errors. However, they will still have trouble
interpreting the errors. You cannot relate them back to actual locations in
the XML document and there is no easy way to customize the error
message to be more meaningful. Custom code becomes standard fare with
this option.

= Validate documents in the BPM.

The other approach is to build validation utility classes that can be invoked
conditionally by your BPM system so that you don't have validation code
containing parser error handlers all over your project which would be hard
to maintain.

IMPLICATIONS

Most developers migrate to using the BPM approach as there is less custom
code and more metadata captured about the rules. However, this approach has
the following important implications:

= System changes are difficult.

Business process analysts will not easily follow the business processes
because the custom code includes considerable technical information that
is not their expertise.

= Re-use of the business process is lost across other integrations.

Custom code makes the ability to change out systems much more
challenging, given that this kind of code exists throughout this
implementation for invoking mappings.

Scaling SOA through EAI Enhancement and Use of Model-based Standards
Page 21 of 24

= Performance slows.

Performance suffers with so much logic and interaction complicating the
BPM. In this approach, the BPM becomes heavily weighted with extra
code, mapping decisions, and sub-processes that are data integration details
instead of business processes. XSLT accelerators cannot fix this
performance hit because they do not influence the performance of the
processes.

DataXtend SlI's Approach to XSD contraints

DataXtend Sl can enforce all of these constraints in memory with conditional
expressions that can ensure that these rules fire at the right time to ensure
integrity. The constraints are imported automatically with the XSD and can be
modified with if/then/else expressions to support the business conditions.

The BPM remains simple and free of any low level data integrity decision
nodes. Analysts can continue to understand and modify the business processes
as appropriate.

Performance is also maximized as the BPM is invoked only on process and
workflow changes, not on integrity checks that belong at the data tier.

Conclusions

As SOA adoption grows, corporations are increasingly faced with the new
challenges of scaling an SOA. The requirements are to deliver:

= Flexible and agile systems that easily interoperate;
= Model-based data consistency based on business rules;
= Correct data in a dynamic runtime environment.

All while improving productivity, reducing manual governance, and optimizing
performance.

EAI tools, while enabling a services-based business process environment, don’t
by themselves allow IT departments to readily meet these requirements. This
situation has spawned a humber of novel approaches, some commonly used, but
which, when applied to one issue, often exacerbate another.

The solution seems to center on using an industry standard data model (i.e. SID)
as the basis for mapping data between applications, since it overcomes the most
obvious issues of hard-coding point-to-point XML transformations directly in
XSLT. But use of the model by itself still falls short of solving more esoteric
issues such as enforcing data consistency rules and executing conditional
constraints at runtime.

DataXtend SI’s suite of tools was designed to deliver a semantic metadata-
driven solution that simultaneously meets this specific set of requirements,
working within an EAI environment using a model such as the SID.

Scaling SOA through EAI Enhancement and Use of Model-based Standards
Page 22 of 24

Semantic solutions hold promise but tend to be unfocused and unproven. That is
what sets DataXtend Semantic Integrator apart. DataXtend Sl has been chosen
and is being deployed because of unique capabilities that enhance an EAI
environment and enable SOA while improving productivity, reducing manual
governance, and optimizing performance.

= DataXtend Sl tools support attribute customization for model expansion,
and conditional logic for dynamic data routing and transformation at
runtime, but store it as metadata separate from the model so the model
remains standard.

= DataXtend Sl enables business analysts to define business rules, captured
as metadata, enforced at runtime to ensure consistency, using no custom
code.

= DataXtend SI’s E2E impact analysis takes time and risk out of making
changes:

e Works across all applications;
e Provides complete reverse chaining through all indirect associations;

o Covers every schema, attribute, class, object and operation, as well as
all rules.

Scaling SOA through EAI Enhancement and Use of Model-based Standards
Page 23 of 24

About Progress Software Corporation

Progress Software Corporation (Nasdag: PRGS) provides application
infrastructure software for the development, deployment, integration and
management of business applications. Our goal is to maximize the benefits of
information technology while minimizing its complexity and total cost of
ownership. Progress can be reached at www.progress.com or +1-781-280-4000.

PROGRESS

SOFTWARE

www.progress.com/dataxtend

Worldwide and North American Headquarters
Progress Software, 14 Oak Park, Bedford, MA 01730 USA Tel: +1 781 280 4000

UK and Northern Ireland
Progress Software, 210 Bath Road, Slough, Berkshire, SL1 3XE England Tel: +44 1753 216 300

Central Europe
Progress Software, Konrad-Adenauer-Str. 13, 50996 KéIn, Germany Tel: +49 6171 981 127

© 2006 Progress Software Corporation. All rights reserved. Progress and DataXtend are trademarks or registered trademarks of Progress Software
Corporation, or any of its affiliates or subsidiaries, in the U.S. and other countries. Any other trademarks or service marks contained herein are the
property of their respective owners. Specifications subject to change without notice. Visit www.progress.com for more information.

Scaling SOA through EAI Enhancement and Use of Model-based Standards
Page 24 of 24

	DataXtend SI Radically Accelerates Productivity
	DataXtend SI Simplifies Governance
	DataXtend SI Ensures Critical Performance
	Key Assumptions
	Productivity Challenges
	EAI Resorts to Custom Code for Complex Transformations
	A Complex Transformation Example
	Current Practice Alternative
	DataXtend SI’s Answer to Complex Transformations is Computed Attributes

	EAI Must Customize to Extend a Standard
	Current Practice Alternative #1 — Physically Change the Model
	Current Practice Alternative #2 — Write XSLT
	Implications
	DataXtend SI’s Solution for Extending Standards is Computed Attributes

	EAI Tools Do Not Enforce Data Consistency Rules
	Current Practice Alternative #1 – Write Code
	Implication
	Current Practice Alternative #2 – Rules Engines
	Implications
	DataXtend SI’s Answer to Data Consistency Rules

	EAI Error Handling is an Afterthought and Custom
	Implications of Using XSLT for Error Handling
	DataXtend SI’s Answer – Error Handling with No Custom Code

	Governance Challenges
	EAI Lacks a True Common Model
	Current Best Practice Alternative #1 -- Use the SID with Point-to-Point EAI Mapping Tools.
	Implications of Mapping the SID in a Point-to-Point Architecture
	Current Practice Alternative #2 – Mapping Smaller XSDs with XSLT Templates
	Implications of XSLT Templates
	DataXtend SI Delivers a Common Model Architecture (CMA)

	EAI is Missing 360o End-to-End Impact Analysis Tools
	Current EAI Best Practice Uses an Impact Analysis Repository
	Implications of Using an EAI Impact Analysis Repository
	DataXtend SI’s Answer to Impact Analysis -- 360o End-to-End (E2E)

	Performance and Run-Time Challenges
	XSLT Causes Significant Performances Challenges
	Current Best Practice Solutions
	DataXtend SI’s Answer to XSLT Performance Issues is to Generate Java Code from Metadata

	EAI Limitations often “Pollute” and Tax the Business Process
	Mapping Tool Limitations Drive Developers to Overburden the BPM
	Current Practice Is To Write Code in the BPMS
	Implications
	DataXtend SI Provides Model-Based Semantic Routing and Mediation via CMA

	Dynamic XSD Constraint Processing Overburdens the BPM
	Current Practices For XSD Constraint Processing
	DataXtend SI’s Approach to XSD contraints

	Conclusions

